nalyse the bacterial and macrophage data
238
ary
243
Expression Pattern Discovery
245
fferentially expressed genes
245
.1 The biological significance
246
.2 The statistical significance
248
.3 The Type I and Type II errors
249
croarray gene expression analysis
251
.1 The limma package
252
.2 The visualisation of the discovered DEGs using the MA
plot
256
.3 The visualisation of the discovered DEGs using the
volcano plot
257
.4 How to discover DEGs using the limma package
260
EG discovery for RNA-seq sequencing count data
261
.1 Discover DEGs for sequencing count data using DESeq2
262
.2 Discover DEGs for sequencing count data using edgeR
265
scover differentially expressed genes when outliers are present
268
.1 Example of heterogeneous gene expression
268
.2 COPA
271
.3 OS
272
.4 ORT
272
.5 MOST
272
.6 LSOSS
273
.7 DOG
273
.8 Discover DEGs when outlier genes are present —
simulated data
278
.9 Discover heterogenous DEGs for a cancer data set
282
ne expression bimodality pattern discovery
288
.1 The likelihood ratio test approach
289
.2 The bimodality index test approach
290
.3 The gap maximisation test approach
291
.4 Simulated data analysis
298
.5 Letrozole data analysis
300
ual-scale Gaussian model for small replicate data DEG
covery
302
.1 The dual-scale Gaussian model
302
6.6.1.1 The working principle of DSG
302
6.6.1.2 DSG for simulated data DEG discovery
306